Which of the following is not a correct boundary condition at an interface between two homogeneous dielectric media? (In the following \hat{n} is a unit vector normal to the interface, σ and j_s are the surface charge and current densities respectively.)

(A)
$$\hat{n} \times (D_1 - D_2) = 0$$
 (B) $\hat{n} \times (H_1 - H_2) = j_s$
(C) $\hat{n} \cdot (D_1 - D_2) = \sigma$ (D) $\hat{n} \cdot (B_1 - B_2) = 0$

(B)
$$\hat{n} \times (H_1 - H_2) = j_s$$

(C)
$$\hat{n} \cdot (D_1 - D_2) = \sigma$$

(D)
$$\hat{n} \cdot (B_1 - B_2) = 0$$

The permittivity tensor of a uniaxial anisotropic medium, in the standard Cartesian basis, is

$$\begin{pmatrix} 4\epsilon_0 & 0 & 0 \\ 0 & 4\epsilon_0 & 0 \\ 0 & 0 & 9\epsilon_0 \end{pmatrix}$$
 where ϵ_0 is a constant. The wave

number of an electromagnetic plane wave polarized along the <u>x-direction</u>, and propagating along the <u>y-direction</u> in this medium (in terms of the wave number k_0 of the wave in vacuum) is—

(A)
$$4k_0$$
 (B) $2k_0$

(C)
$$9k_0$$
 (D) $3k_0$

$$\vec{E} = \hat{\chi} E_0 e^{-\kappa y \hat{y}}$$

$$\kappa = \omega \sqrt{M_0 \epsilon}$$

$$\epsilon = 4\epsilon_0$$

$$\kappa = \omega \sqrt{M_0 (4\epsilon_0)}$$

$$= 2\omega \sqrt{M_0 \epsilon_0}$$

$$\kappa = 2\kappa_0$$